Skeleton-aware multi-scale heatmap regression for 2D hand pose estimation

05/23/2021
by   Ikram Kourbane, et al.
0

Existing RGB-based 2D hand pose estimation methods learn the joint locations from a single resolution, which is not suitable for different hand sizes. To tackle this problem, we propose a new deep learning-based framework that consists of two main modules. The former presents a segmentation-based approach to detect the hand skeleton and localize the hand bounding box. The second module regresses the 2D joint locations through a multi-scale heatmap regression approach that exploits the predicted hand skeleton as a constraint to guide the model. Furthermore, we construct a new dataset that is suitable for both hand detection and pose estimation. We qualitatively and quantitatively validate our method on two datasets. Results demonstrate that the proposed method outperforms state-of-the-art and can recover the pose even in cluttered images and complex poses.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro