Skeleton-Based Action Segmentation with Multi-Stage Spatial-Temporal Graph Convolutional Neural Networks

02/03/2022
by   Benjamin Filtjens, et al.
0

The ability to identify and temporally segment fine-grained actions in motion capture sequences is crucial for applications in human movement analysis. Motion capture is typically performed with optical or inertial measurement systems, which encode human movement as a time series of human joint locations and orientations or their higher-order representations. State-of-the-art action segmentation approaches use multiple stages of temporal convolutions. The main idea is to generate an initial prediction with several layers of temporal convolutions and refine these predictions over multiple stages, also with temporal convolutions. Although these approaches capture long-term temporal patterns, the initial predictions do not adequately consider the spatial hierarchy among the human joints. To address this limitation, we present multi-stage spatial-temporal graph convolutional neural networks (MS-GCN). Our framework decouples the architecture of the initial prediction generation stage from the refinement stages. Specifically, we replace the initial stage of temporal convolutions with spatial-temporal graph convolutions, which better exploit the spatial configuration of the joints and their temporal dynamics. Our framework was compared to four strong baselines on five tasks. Experimental results demonstrate that our framework achieves state-of-the-art performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset