Skeptical inferences in multi-label ranking with sets of probabilities

In this paper, we consider the problem of making skeptical inferences for the multi-label ranking problem. We assume that our uncertainty is described by a convex set of probabilities (i.e. a credal set), defined over the set of labels. Instead of learning a singleton prediction (or, a completed ranking over the labels), we thus seek for skeptical inferences in terms of set-valued predictions consisting of completed rankings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro