Small area estimation under unit-level generalized additive models for location, scale and shape

01/31/2023
by   Lorenzo Mori, et al.
0

Small Area Estimation (SAE) models commonly assume Normal distribution or, more generally, exponential family. We propose a SAE unit-level model based on Generalized Additive Models for Location, Scale and Shape (GAMLSS). GAMLSS completely release the exponential family distributional assumption and allow each parameter to depend on covariates. Besides, a bootstrap approach to estimate MSE is proposed. The performance of the estimators is evaluated with model- and design-based simulations. Results show that the proposed predictor works better than the well-known EBLUP. The SAE model based on GAMLSS is used to estimate the per-capita expenditure in small areas, based on the Italian data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro