Solving Decomposable Sparse Systems

01/13/2020
by   Taylor Brysiewicz, et al.
0

Amendola et al. proposed a method for solving systems of polynomial equations lying in a family which exploits a recursive decomposition into smaller systems. A family of systems admits such a decomposition if and only if the corresponding Galois group is imprimitive. When the Galois group is imprimitive we consider the problem of computing an explicit decomposition. A consequence of Esterov's classification of sparse polynomial systems with imprimitive Galois groups is that this decomposition is obtained by inspection. This leads to a recursive algorithm to solve decomposable sparse systems, which we present and give evidence for its efficiency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset