Sparse Optical Flow-Based Line Feature Tracking
In this paper we propose a novel sparse optical flow (SOF)-based line feature tracking method for the camera pose estimation problem. This method is inspired by the point-based SOF algorithm and developed based on an observation that two adjacent images in time-varying image sequences satisfy brightness invariant. Based on this observation, we re-define the goal of line feature tracking: track two endpoints of a line feature instead of the entire line based on gray value matching instead of descriptor matching. To achieve this goal, an efficient two endpoint tracking (TET) method is presented: first, describe a given line feature with its two endpoints; next, track the two endpoints based on SOF to obtain two new tracked endpoints by minimizing a pixel-level grayscale residual function; finally, connect the two tracked endpoints to generate a new line feature. The correspondence is established between the given and the new line feature. Compared with current descriptor-based methods, our TET method needs not to compute descriptors and detect line features repeatedly. Naturally, it has an obvious advantage over computation. Experiments in several public benchmark datasets show our method yields highly competitive accuracy with an obvious advantage over speed.
READ FULL TEXT