Spectral Graph Analysis: A Unified Explanation and Modern Perspectives

01/21/2019
by   Subhadeep Mukhopadhyay, et al.
0

Complex networks or graphs are ubiquitous in sciences and engineering: biological networks, brain networks, transportation networks, social networks, and the World Wide Web, to name a few. Spectral graph theory provides a set of useful techniques and models for understanding `patterns of interconnectedness' in a graph. Our prime focus in this paper is on the following question: Is there a unified explanation and description of the fundamental spectral graph methods? There are at least two reasons to be interested in this question. Firstly, to gain a much deeper and refined understanding of the basic foundational principles, and secondly, to derive rich consequences with practical significance for algorithm design. However, despite half a century of research, this question remains one of the most formidable open issues, if not the core problem in modern network science. The achievement of this paper is to take a step towards answering this question by discovering a simple, yet universal statistical logic of spectral graph analysis. The prescribed viewpoint appears to be good enough to accommodate almost all existing spectral graph techniques as a consequence of just one single formalism and algorithm.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro