Specular- and Diffuse-reflection-based Face Liveness Detection for Mobile Devices
In light of the rising demand for biometric-authentication systems, preventing face spoofing attacks is a critical issue for the safe deployment of face recognition systems. Here, we propose an efficient liveness detection algorithm that requires minimal hardware and only a small database, making it suitable for resource-constrained devices such as mobile phones. Utilizing one monocular visible light camera, the proposed algorithm takes two facial photos, one taken with a flash, the other without a flash. The proposed SpecDiff descriptor is constructed by leveraging two types of reflection: (i) specular reflections from the iris region that have a specific intensity distribution depending on liveness, and (ii) diffuse reflections from the entire face region that represents the 3D structure of a subject's face. Classifiers trained with SpecDiff descriptor outperforms other flash-based liveness detection algorithms on both an in-house database and on publicly available NUAA and Replay-Attack databases. Moreover, the proposed algorithm achieves comparable accuracy to that of an end-to-end, deep neural network classifier, while being approximately ten-times faster execution speed.
READ FULL TEXT