SPOT: Scalable 3D Pre-training via Occupancy Prediction for Autonomous Driving

09/19/2023
by   Xiangchao Yan, et al.
0

Annotating 3D LiDAR point clouds for perception tasks including 3D object detection and LiDAR semantic segmentation is notoriously time-and-energy-consuming. To alleviate the burden from labeling, it is promising to perform large-scale pre-training and fine-tune the pre-trained backbone on different downstream datasets as well as tasks. In this paper, we propose SPOT, namely Scalable Pre-training via Occupancy prediction for learning Transferable 3D representations, and demonstrate its effectiveness on various public datasets with different downstream tasks under the label-efficiency setting. Our contributions are threefold: (1) Occupancy prediction is shown to be promising for learning general representations, which is demonstrated by extensive experiments on plenty of datasets and tasks. (2) SPOT uses beam re-sampling technique for point cloud augmentation and applies class-balancing strategies to overcome the domain gap brought by various LiDAR sensors and annotation strategies in different datasets. (3) Scalable pre-training is observed, that is, the downstream performance across all the experiments gets better with more pre-training data. We believe that our findings can facilitate understanding of LiDAR point clouds and pave the way for future exploration in LiDAR pre-training. Codes and models will be released.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro