Stability properties for a class of inverse problems

03/23/2022
by   Darko Volkov, et al.
0

We establish Lipschitz stability properties for a class of inverse problems. In that class, the associated direct problem is formulated by an integral operator Am depending non-linearly on a parameter m and operating on a function u. In the inversion step both u and m are unknown but we are only interested in recovering m. We discuss examples of such inverse problems for the elasticity equation with applications to seismology and for the inverse scattering problem in electromagnetic theory. Assuming a few injectivity and regularity properties for Am, we prove that the inverse problem with a finite number of data points is solvable and that the solution is Lipschitz stable in the data. We show a reconstruction example illustrating the use of neural networks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset