Stabilized SVRG: Simple Variance Reduction for Nonconvex Optimization
Variance reduction techniques like SVRG provide simple and fast algorithms for optimizing a convex finite-sum objective. For nonconvex objectives, these techniques can also find a first-order stationary point (with small gradient). However, in nonconvex optimization it is often crucial to find a second-order stationary point (with small gradient and almost PSD hessian). In this paper, we show that Stabilized SVRG (a simple variant of SVRG) can find an ϵ-second-order stationary point using only O(n^2/3/ϵ^2+n/ϵ^1.5) stochastic gradients. To our best knowledge, this is the first second-order guarantee for a simple variant of SVRG. The running time almost matches the known guarantees for finding ϵ-first-order stationary points.
READ FULL TEXT