StaQC: A Systematically Mined Question-Code Dataset from Stack Overflow

03/26/2018
by   Ziyu Yao, et al.
0

Stack Overflow (SO) has been a great source of natural language questions and their code solutions (i.e., question-code pairs), which are critical for many tasks including code retrieval and annotation. In most existing research, question-code pairs were collected heuristically and tend to have low quality. In this paper, we investigate a new problem of systematically mining question-code pairs from Stack Overflow (in contrast to heuristically collecting them). It is formulated as predicting whether or not a code snippet is a standalone solution to a question. We propose a novel Bi-View Hierarchical Neural Network which can capture both the programming content and the textual context of a code snippet (i.e., two views) to make a prediction. On two manually annotated datasets in Python and SQL domain, our framework substantially outperforms heuristic methods with at least 15 accuracy. Furthermore, we present StaQC (Stack Overflow Question-Code pairs), the largest dataset to date of 148K Python and 120K SQL question-code pairs, automatically mined from SO using our framework. Under various case studies, we demonstrate that StaQC can greatly help develop data-hungry models for associating natural language with programming language.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro