State Stabilization for Gate-Model Quantum Computers
Gate-model quantum computers can allow quantum computations in near-term implementations. The stabilization of an optimal quantum state of a quantum computer is a challenge, since it requires stable quantum evolutions via a precise calibration of the unitaries. Here, we propose a method for the stabilization of an optimal quantum state of a quantum computer through an arbitrary number of running sequences. The optimal state of the quantum computer is set to maximize an objective function of an arbitrary problem fed into the quantum computer. We also propose a procedure to classify the stabilized quantum states of the quantum computer into stability classes. The results are convenient for gate-model quantum computations and near-term quantum computers.
READ FULL TEXT