Statistical Inference for High-Dimensional Vector Autoregression with Measurement Error

09/17/2020
by   Xiang Lyu, et al.
0

High-dimensional vector autoregression with measurement error is frequently encountered in a large variety of scientific and business applications. In this article, we study statistical inference of the transition matrix under this model. While there has been a large body of literature studying sparse estimation of the transition matrix, there is a paucity of inference solutions, especially in the high-dimensional scenario. We develop inferential procedures for both the global and simultaneous testing of the transition matrix. We first develop a new sparse expectation-maximization algorithm to estimate the model parameters, and carefully characterize their estimation precisions. We then construct a Gaussian matrix, after proper bias and variance corrections, from which we derive the test statistics. Finally, we develop the testing procedures and establish their asymptotic guarantees. We study the finite-sample performance of our tests through intensive simulations, and illustrate with a brain connectivity analysis example.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro