Statistical-Query Lower Bounds via Functional Gradients

06/29/2020
by   Surbhi Goel, et al.
0

We give the first statistical-query lower bounds for agnostically learning any non-polynomial activation with respect to Gaussian marginals (e.g., ReLU, sigmoid, sign). For the specific problem of ReLU regression (equivalently, agnostically learning a ReLU), we show that any statistical-query algorithm with tolerance n^-Θ(ϵ^-1/2) must use at least 2^n^cϵ queries for some constant c > 0, where n is the dimension and ϵ is the accuracy parameter. Our results rule out general (as opposed to correlational) SQ learning algorithms, which is unusual for real-valued learning problems. Our techniques involve a gradient boosting procedure for "amplifying" recent lower bounds due to Diakonikolas et al. (COLT 2020) and Goel et al. (ICML 2020) on the SQ dimension of functions computed by two-layer neural networks. The crucial new ingredient is the use of a nonstandard convex functional during the boosting procedure. This also yields a best-possible reduction between two commonly studied models of learning: agnostic learning and probabilistic concepts.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset