Statistical Reasoning: Choosing and Checking the Ingredients, Inferences Based on a Measure of Statistical Evidence with Some Applications
The features of a logically sound approach to a theory of statistical reasoning are discussed. A particular approach that satisfies these criteria is reviewed. This is seen to involve selection of a model, model checking, elicitation of a prior, checking the prior for bias, checking for prior-data conflict and estimation and hypothesis assessment inferences based on a measure of evidence. A long-standing anomalous example is resolved by this approach to inference and an application is made to a practical problem of considerable importance which, among other novel aspects of the analysis, involves the development of a relevant elicitation algorithm.
READ FULL TEXT