Stochastic Rank-1 Bandits

08/10/2016
by   Sumeet Katariya, et al.
0

We propose stochastic rank-1 bandits, a class of online learning problems where at each step a learning agent chooses a pair of row and column arms, and receives the product of their values as a reward. The main challenge of the problem is that the individual values of the row and column are unobserved. We assume that these values are stochastic and drawn independently. We propose a computationally-efficient algorithm for solving our problem, which we call Rank1Elim. We derive a O((K + L) (1 / Δ) n) upper bound on its n-step regret, where K is the number of rows, L is the number of columns, and Δ is the minimum of the row and column gaps; under the assumption that the mean row and column rewards are bounded away from zero. To the best of our knowledge, we present the first bandit algorithm that finds the maximum entry of a rank-1 matrix whose regret is linear in K + L, 1 / Δ, and n. We also derive a nearly matching lower bound. Finally, we evaluate Rank1Elim empirically on multiple problems. We observe that it leverages the structure of our problems and can learn near-optimal solutions even if our modeling assumptions are mildly violated.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset