Stochastic Variance Reduction for Variational Inequality Methods

02/16/2021
by   Ahmet Alacaoglu, et al.
0

We propose stochastic variance reduced algorithms for solving convex-concave saddle point problems, monotone variational inequalities, and monotone inclusions. Our framework applies to extragradient, forward-backward-forward, and forward-reflected-backward methods both in Euclidean and Bregman setups. All proposed methods converge in exactly the same setting as their deterministic counterparts and they either match or improve the best-known complexities for solving structured min-max problems. Our results reinforce the correspondence between variance reduction in variational inequalities and minimization. We also illustrate the improvements of our approach with numerical evaluations on matrix games.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset