Stop Wasting My Time! Saving Days of ImageNet and BERT Training with Latest Weight Averaging

09/29/2022
by   Jean Kaddour, et al.
0

Training vision or language models on large datasets can take days, if not weeks. We show that averaging the weights of the k latest checkpoints, each collected at the end of an epoch, can speed up the training progression in terms of loss and accuracy by dozens of epochs, corresponding to time savings up to  68 and  30 GPU hours when training a ResNet50 on ImageNet and RoBERTa-Base model on WikiText-103, respectively. We also provide the code and model checkpoint trajectory to reproduce the results and facilitate research on reusing historical weights for faster convergence.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset