Strategy-Proof Spectrum Allocation among Multiple Operators for Demand Varying Wireless Networks
To address the exponentially increasing data rate demands of end users, necessitates efficient spectrum allocation among co-existing operators in licensed and unlicensed spectrum bands to cater to the temporal and spatial variations of traffic in the wireless network. In this paper, we address the spectrum allocation problem among non-cooperative operators via auctions. The classical Vickrey-Clarke-Groves (VCG) approach provides the framework for a strategy-proof and social welfare maximizing auction at high computational complexity, which makes it infeasible for practical implementation. We propose sealed bid auction mechanisms for spectrum allocation which are computationally tractable and hence applicable for allocating spectrum by performing auctions in short durations as per the dynamic load variations of the network. We establish that the proposed algorithm is strategy-proof for uniform demand. Furthermore, for non-uniform demand we propose an algorithm that satisfies weak strategy-proofness. We also consider non-linear increase in the marginal valuations with demand. Simulation results are presented to exhibit the performance comparison of the proposed algorithms with VCG and other existing mechanisms.
READ FULL TEXT