Structural Sparsity in Multiple Measurements

03/02/2021
by   Florian Boßmann, et al.
0

We propose a novel sparsity model for distributed compressed sensing in the multiple measurement vectors (MMV) setting. Our model extends the concept of row-sparsity to allow more general types of structured sparsity arising in a variety of applications like, e.g., seismic exploration and non-destructive testing. To reconstruct structured data from observed measurements, we derive a non-convex but well-conditioned LASSO-type functional. By exploiting the convex-concave geometry of the functional, we design a projected gradient descent algorithm and show its effectiveness in extensive numerical simulations, both on toy and real data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset