Structure-preserving Reduced Order Modeling of non-traditional Shallow Water Equation
An energy preserving reduced order model is developed for the nontraditional shallow water equation (NTSWE) with full Coriolis force. The NTSWE in the noncanonical Hamiltonian/Poisson form is discretized in space by finite differences. The resulting system of ordinary differential equations is integrated in time by the energy preserving average vector field (AVF) method. The Poisson structure of the NTSWE in discretized exhibits a skew-symmetric matrix depending on the state variables. An energy preserving, computationally efficient reduced-order model (ROM) is constructed by proper orthogonal decomposition with Galerkin projection. The nonlinearities are computed for the ROM efficiently by discrete empirical interpolation method. Preservation of the semi-discrete energy and the enstrophy are shown for the full order model, and for the ROM which ensures the long term stability of the solutions. The accuracy and computational efficiency of the ROMs are shown by two numerical test problems
READ FULL TEXT