Structured Representations for Reviews:Aspect-Based Variational Hidden Factor Models

12/12/2018
by   Babak Esmaeili, et al.
0

We present Variational Aspect-Based Latent Dirichlet Allocation (VALDA), a family of autoencoding topic models that learn aspect-based representations of reviews. VALDA defines a user-item encoder that maps bag-of-words vectors for combined reviews associated with each paired user and item onto structured embeddings, which in turn define per-aspect topic weights. We model individual reviews in a structured manner by inferring an aspect assignment for each sentence in a given review, where the per-aspect topic weights obtained by the user-item encoder serve to define a mixture over topics, conditioned on the aspect. The result is an autoencoding neural topic model for reviews, which can be trained in a fully unsupervised manner to learn topics that are structured into aspects. Experimental evaluation on large number of datasets demonstrates that aspects are interpretable, yield higher coherence scores than non-structured autoencoding topic model variants, and can be utilized to perform aspect-based comparison and genre discovery.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset