SuperPoint: Self-Supervised Interest Point Detection and Description

12/20/2017
by   Daniel DeTone, et al.
0

This paper presents a self-supervised framework for training interest point detectors and descriptors suitable for a large number of multiple-view geometry problems in computer vision. As opposed to patch-based neural networks, our fully-convolutional model operates on full-sized images and jointly computes pixel-level interest point locations and associated descriptors in one forward pass. We introduce Homographic Adaptation, a multi-scale, multi-homography approach for boosting interest point detection accuracy and performing cross-domain adaptation (e.g., synthetic-to-real). Our model, when trained on the MS-COCO generic image dataset using Homographic Adaptation, is able to repeatedly detect a much richer set of interest points than the initial pre-adapted deep model and any other traditional corner detector. The final system gives rise to strong interest point repeatability on the HPatches dataset and outperforms traditional descriptors such as ORB and SIFT on point matching accuracy and on the task of homography estimation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset