Supervised Attention Using Homophily in Graph Neural Networks

07/11/2023
by   Michail Chatzianastasis, et al.
0

Graph neural networks have become the standard approach for dealing with learning problems on graphs. Among the different variants of graph neural networks, graph attention networks (GATs) have been applied with great success to different tasks. In the GAT model, each node assigns an importance score to its neighbors using an attention mechanism. However, similar to other graph neural networks, GATs aggregate messages from nodes that belong to different classes, and therefore produce node representations that are not well separated with respect to the different classes, which might hurt their performance. In this work, to alleviate this problem, we propose a new technique that can be incorporated into any graph attention model to encourage higher attention scores between nodes that share the same class label. We evaluate the proposed method on several node classification datasets demonstrating increased performance over standard baseline models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset