Syntax-based Attention Model for Natural Language Inference

07/22/2016
by   Pengfei Liu, et al.
0

Introducing attentional mechanism in neural network is a powerful concept, and has achieved impressive results in many natural language processing tasks. However, most of the existing models impose attentional distribution on a flat topology, namely the entire input representation sequence. Clearly, any well-formed sentence has its accompanying syntactic tree structure, which is a much rich topology. Applying attention to such topology not only exploits the underlying syntax, but also makes attention more interpretable. In this paper, we explore this direction in the context of natural language inference. The results demonstrate its efficacy. We also perform extensive qualitative analysis, deriving insights and intuitions of why and how our model works.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro