Tensor Decomposition Bounds for TBM-Based Massive Access

11/03/2021
by   Alexis Decurninge, et al.
0

Tensor-based modulation (TBM) has been proposed in the context of unsourced random access for massive uplink communication. In this modulation, transmitters encode data as rank-1 tensors, with factors from a discrete vector constellation. This construction allows to split the multi-user receiver into a user separation step based on a low-rank tensor decomposition, and independent single-user demappers. In this paper, we analyze the limits of the tensor decomposition using Cramér-Rao bounds, providing bounds on the accuracy of the estimated factors. These bounds are shown by simulation to be tight at high SNR. We introduce an approximate perturbation model for the output of the tensor decomposition, which facilitates the computation of the log-likelihood ratios (LLR) of the transmitted bits, and provides an approximate achievable bound for the finite-length error probability. Combining TBM with classical forward error correction coding schemes such as polar codes, we use the approximate LLR to derive soft-decision decoder showing a gain over hard-decision decoders at low SNR.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset