Text comparison using word vector representations and dimensionality reduction

07/02/2016
by   Hendrik Heuer, et al.
0

This paper describes a technique to compare large text sources using word vector representations (word2vec) and dimensionality reduction (t-SNE) and how it can be implemented using Python. The technique provides a bird's-eye view of text sources, e.g. text summaries and their source material, and enables users to explore text sources like a geographical map. Word vector representations capture many linguistic properties such as gender, tense, plurality and even semantic concepts like "capital city of". Using dimensionality reduction, a 2D map can be computed where semantically similar words are close to each other. The technique uses the word2vec model from the gensim Python library and t-SNE from scikit-learn.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset