The Anatomy of a Modular System for Media Content Analysis

02/25/2014
by   Ilias Flaounas, et al.
0

Intelligent systems for the annotation of media content are increasingly being used for the automation of parts of social science research. In this domain the problem of integrating various Artificial Intelligence (AI) algorithms into a single intelligent system arises spontaneously. As part of our ongoing effort in automating media content analysis for the social sciences, we have built a modular system by combining multiple AI modules into a flexible framework in which they can cooperate in complex tasks. Our system combines data gathering, machine translation, topic classification, extraction and annotation of entities and social networks, as well as many other tasks that have been perfected over the past years of AI research. Over the last few years, it has allowed us to realise a series of scientific studies over a vast range of applications including comparative studies between news outlets and media content in different countries, modelling of user preferences, and monitoring public mood. The framework is flexible and allows the design and implementation of modular agents, where simple modules cooperate in the annotation of a large dataset without central coordination.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset