The Complexity of the Partition Coloring Problem
Given a simple undirected graph G=(V,E) and a partition of the vertex set V into p parts, the Partition Coloring Problem asks if we can select one vertex from each part of the partition such that the chromatic number of the subgraph induced on the p selected vertices is bounded by k. PCP is a generalized problem of the classical Vertex Coloring Problem and has applications in many areas, such as scheduling and encoding etc. In this paper, we show the complexity status of the Partition Coloring Problem with three parameters: the number of colors, the number of parts of the partition, and the maximum size of each part of the partition. Furthermore, we give a new exact algorithm for this problem.
READ FULL TEXT