The continuous weak order

12/05/2018
by   Luigi Santocanale, et al.
0

The set of permutations on a finite set can be given the lattice structure known as the weak Bruhat order. This lattice structure is generalized to the set of words on a fixed alphabet Σ = x,y,z,..., where each letter has a fixed number of occurrences. These lattices are known as multinomial lattices and, when card(Σ) = 2, as lattices of lattice paths. By interpreting the letters x, y, z, . . . as axes, these words can be interpreted as discrete increasing paths on a grid of a d-dimensional cube, with d = card(Σ).We show how to extend this ordering to images of continuous monotone functions from the unit interval to a d-dimensional cube and prove that this ordering is a lattice, denoted by L(I^d). This construction relies on a few algebraic properties of the quantale of join-continuous functions from the unit interval of the reals to itself: it is cyclic -autonomous and it satisfies the mix rule.We investigate structural properties of these lattices, which are self-dual and not distributive. We characterize join-irreducible elements and show that these lattices are generated under infinite joins from their join-irreducible elements, they have no completely join-irreducible elements nor compact elements. We study then embeddings of the d-dimensional multinomial lattices into L(I^d). We show that these embeddings arise functorially from subdivisions of the unit interval and observe that L(I^d) is the Dedekind-MacNeille completion of the colimit of these embeddings. Yet, if we restrict to embeddings that take rational values and if d > 2, then every element of L(I^d) is only a join of meets of elements from the colimit of these embeddings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro