The Design of Mutual Information

07/10/2019
by   Nicholas Carrara, et al.
0

We derive the functional form of mutual information (MI) from a set of design criteria and a principle of maximal sufficiency. The (MI) between two sets of propositions is a global quantifier of correlations and is implemented as a tool for ranking joint probability distributions with respect to said correlations. The derivation parallels the derivations of relative entropy with an emphasis on the behavior of independent variables. By constraining the functional I according to special cases, we arrive at its general functional form and hence establish a clear meaning behind its definition. We also discuss the notion of sufficiency and offer a new definition which broadens its applicability.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro