The Dirac equation as a quantum walk over the honeycomb and triangular lattices

03/02/2018
by   Pablo Arrighi, et al.
0

A discrete-time Quantum Walk (QW) is essentially an operator driving the evolution of a single particle on the lattice, through local unitaries. Some QWs admit a continuum limit, leading to well-known physics partial differential equations, such as the Dirac equation. We show that these simulation results need not rely on the grid: the Dirac equation in (2+1)--dimensions can also be simulated, through local unitaries, on the honeycomb or the triangular lattice. The former is of interest in the study of graphene-like materials. The latter, we argue, opens the door for a generalization of the Dirac equation to arbitrary discrete surfaces.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset