The EM algorithm and the Laplace Approximation

01/24/2014
by   Niko Brümmer, et al.
0

The Laplace approximation calls for the computation of second derivatives at the likelihood maximum. When the maximum is found by the EM-algorithm, there is a convenient way to compute these derivatives. The likelihood gradient can be obtained from the EM-auxiliary, while the Hessian can be obtained from this gradient with the Pearlmutter trick.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro