The Equivalence of Fourier-based and Wasserstein Metrics on Imaging Problems

05/13/2020
by   Gennaro Auricchio, et al.
0

We investigate properties of some extensions of a class of Fourier-based probability metrics, originally introduced to study convergence to equilibrium for the solution to the spatially homogeneous Boltzmann equation. At difference with the original one, the new Fourier-based metrics are well-defined also for probability distributions with different centers of mass, and for discrete probability measures supported over a regular grid. Among other properties, it is shown that, in the discrete setting, these new Fourier-based metrics are equivalent either to the Euclidean-Wasserstein distance W_2, or to the Kantorovich-Wasserstein distance W_1, with explicit constants of equivalence. Numerical results then show that in benchmark problems of image processing, Fourier metrics provide a better runtime with respect to Wasserstein ones.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset