The FVC scheme on unstructured meshes for the two-dimensional Shallow Water Equations
The fluid flow transport and hydrodynamic problems often take the form of hyperbolic systems of conservation laws. In this work we will present a new scheme of finite volume methods for solving these evolution equations. It is a family of finite volume Eulerian-Lagrangian methods for the solution of non-linear problems in two space dimensions on unstructured triangular meshes. The proposed approach belongs to the class of predictor-corrector procedures where the numerical fluxes are reconstructed using the method of characteristics, while an Eulerian method is used to discretize the conservation equation in a finite volume framework. The scheme is accurate, conservative and it combines advantages of the modified method of characteristics to accurately solve the non-linear conservation laws with a finite volume method to discretize the equations. The proposed Finite Volume Characteristics (FVC) scheme is also non-oscillatory and avoids the need to solve a Riemann problem. Several test examples will be presented for the shallow water equations. The results will be compared to those obtained with the Roe.
READ FULL TEXT