The General Black-box Attack Method for Graph Neural Networks
With the great success of Graph Neural Networks (GNNs) towards representation learning on graph-structure data, the robustness of GNNs against adversarial attack inevitably becomes a central problem in graph learning domain. Regardless of the fruitful progress, current works suffer from two main limitations: First, the attack method required to be developed case by case; Second, most of them are restricted to the white-box attack. This paper promotes current frameworks in a more general and flexible sense -- we demand only one single method to attack various kinds of GNNs and this attacker is black box driven. To this end, we begin by investigating the theoretical connections between different kinds of GNNs in a principled way and integrate different GNN models into a unified framework, dubbed as General Spectral Graph Convolution. As such, a generalized adversarial attacker is proposed towards two families of GNNs: Convolution-based model and sampling-based model. More interestingly, our attacker does not require any knowledge of the target classifiers used in GNNs. Extensive experimental results validate the effectiveness of our method on several benchmark datasets. Particularly by using our attack, even small graph perturbations like one-edge flip is able to consistently make a strong attack in performance to different GNN models.
READ FULL TEXT