The IMP game: Learnability, approximability and adversarial learning beyond Σ^0_1

02/07/2016
by   Michael Brand, et al.
0

We introduce a problem set-up we call the Iterated Matching Pennies (IMP) game and show that it is a powerful framework for the study of three problems: adversarial learnability, conventional (i.e., non-adversarial) learnability and approximability. Using it, we are able to derive the following theorems. (1) It is possible to learn by example all of Σ^0_1 ∪Π^0_1 as well as some supersets; (2) in adversarial learning (which we describe as a pursuit-evasion game), the pursuer has a winning strategy (in other words, Σ^0_1 can be learned adversarially, but Π^0_1 not); (3) some languages in Π^0_1 cannot be approximated by any language in Σ^0_1. We show corresponding results also for Σ^0_i and Π^0_i for arbitrary i.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro