The impact of training dataset size and ensemble inference strategies on head and neck auto-segmentation

03/30/2023
by   Edward G. A. Henderson, et al.
0

Convolutional neural networks (CNNs) are increasingly being used to automate segmentation of organs-at-risk in radiotherapy. Since large sets of highly curated data are scarce, we investigated how much data is required to train accurate and robust head and neck auto-segmentation models. For this, an established 3D CNN was trained from scratch with different sized datasets (25-1000 scans) to segment the brainstem, parotid glands and spinal cord in CTs. Additionally, we evaluated multiple ensemble techniques to improve the performance of these models. The segmentations improved with training set size up to 250 scans and the ensemble methods significantly improved performance for all organs. The impact of the ensemble methods was most notable in the smallest datasets, demonstrating their potential for use in cases where large training datasets are difficult to obtain.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset