The Pessimistic Limits of Margin-based Losses in Semi-supervised Learning

12/28/2016
by   Jesse H. Krijthe, et al.
0

We show that for linear classifiers defined by convex margin-based surrogate losses that are monotonically decreasing, it is impossible to construct any semi-supervised approach that is able to guarantee an improvement over the supervised classifier measured by this surrogate loss. For non-monotonically decreasing loss functions, we demonstrate safe improvements are possible.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro