The Secretary Problem with Predictions

06/14/2023
by   Kaito Fujii, et al.
0

The value maximization version of the secretary problem is the problem of hiring a candidate with the largest value from a randomly ordered sequence of candidates. In this work, we consider a setting where predictions of candidate values are provided in advance. We propose an algorithm that achieves a nearly optimal value if the predictions are accurate and results in a constant-factor competitive ratio otherwise. We also show that the worst-case competitive ratio of an algorithm cannot be higher than some constant < 1/e, which is the best possible competitive ratio when we ignore predictions, if the algorithm performs nearly optimally when the predictions are accurate. Additionally, for the multiple-choice secretary problem, we propose an algorithm with a similar theoretical guarantee. We empirically illustrate that if the predictions are accurate, the proposed algorithms perform well; meanwhile, if the predictions are inaccurate, performance is comparable to existing algorithms that do not use predictions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset