The stable set problem in graphs with bounded genus and bounded odd cycle packing number

08/17/2019
by   Michele Conforti, et al.
0

Consider the family of graphs without k node-disjoint odd cycles, where k is a constant. Determining the complexity of the stable set problem for such graphs G is a long-standing problem. We give a polynomial-time algorithm for the case that G can be further embedded in a (possibly non-orientable) surface of bounded genus. Moreover, we obtain polynomial-size extended formulations for the respective stable set polytopes. To this end, we show that 2-sided odd cycles satisfy the Erdős-Pósa property in graphs embedded in a fixed surface. This extends the fact that odd cycles satisfy the Erdős-Pósa property in graphs embedded in a fixed orientable surface (Kawarabayashi Nakamoto, 2007). Eventually, our findings allow us to reduce the original problem to the problem of finding a minimum-cost non-negative integer circulation of a certain homology class, which turns out to be efficiently solvable in our case.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro