The Taxicab Sampler: MCMC for Discrete Spaces with Application to Tree Models

07/15/2021
by   Vincent Geels, et al.
0

Motivated by the problem of exploring discrete but very complex state spaces in Bayesian models, we propose a novel Markov Chain Monte Carlo search algorithm: the taxicab sampler. We describe the construction of this sampler and discuss how its interpretation and usage differs from that of standard Metropolis-Hastings as well as the closely-related Hamming ball sampler. The proposed taxicab sampling algorithm is then shown to demonstrate substantial improvement in computation time relative to a naïve Metropolis-Hastings search in a motivating Bayesian regression tree count model, in which we leverage the discrete state space assumption to construct a novel likelihood function that allows for flexibly describing different mean-variance relationships while preserving parameter interpretability compared to existing likelihood functions for count data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset