Threshold-Based Quantum Optimization

06/25/2021
by   John Golden, et al.
0

We propose and study Th-QAOA (pronounced Threshold QAOA), a variation of the Quantum Alternating Operator Ansatz (QAOA) that replaces the standard phase separator operator, which encodes the objective function, with a threshold function that returns a value 1 for solutions with an objective value above the threshold and a 0 otherwise. We vary the threshold value to arrive at a quantum optimization algorithm. We focus on a combination with the Grover Mixer operator; the resulting GM-Th-QAOA can be viewed as a generalization of Grover's quantum search algorithm and its minimum/maximum finding cousin to approximate optimization. Our main findings include: (i) we show semi-formally that the optimum parameter values of GM-Th-QAOA (angles and threshold value) can be found with O(log(p) ×log M) iterations of the classical outer loop, where p is the number of QAOA rounds and M is an upper bound on the solution value (often the number of vertices or edges in an input graph), thus eliminating the notorious outer-loop parameter finding issue of other QAOA algorithms; (ii) GM-Th-QAOA can be simulated classically with little effort up to 100 qubits through a set of tricks that cut down memory requirements; (iii) somewhat surprisingly, GM-Th-QAOA outperforms its non-thresholded counterparts in terms of approximation ratios achieved. This third result holds across a range of optimization problems (MaxCut, Max k-VertexCover, Max k-DensestSubgraph, MaxBisection) and various experimental design parameters, such as different input edge densities and constraint sizes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset