Toward Compositional Generalization in Object-Oriented World Modeling

04/28/2022
by   Linfeng Zhao, et al.
13

Compositional generalization is a critical ability in learning and decision-making. We focus on the setting of reinforcement learning in object-oriented environments to study compositional generalization in world modeling. We (1) formalize the compositional generalization problem with an algebraic approach and (2) study how a world model can achieve that. We introduce a conceptual environment, Object Library, and two instances, and deploy a principled pipeline to measure the generalization ability. Motivated by the formulation, we analyze several methods with exact or no compositional generalization ability using our framework, and design a differentiable approach, Homomorphic Object-oriented World Model (HOWM), that achieves approximate but more efficient compositional generalization.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro