Towards a Theory of Parameterized Streaming Algorithms
Parameterized complexity attempts to give a more fine-grained analysis of the complexity of problems: instead of measuring the running time as a function of only the input size, we analyze the running time with respect to additional parameters. This approach has proven to be highly successful in delineating our understanding of -hard problems. Given this success with the TIME resource, it seems but natural to use this approach for dealing with the SPACE resource. First attempts in this direction have considered a few individual problems, with some success: Fafianie and Kratsch [MFCS'14] and Chitnis et al. [SODA'15] introduced the notions of streaming kernels and parameterized streaming algorithms respectively. For example, the latter shows how to refine the Ω(n^2) bit lower bound for finding a minimum Vertex Cover (VC) in the streaming setting by designing an algorithm for the parameterized k-VC problem which uses O(k^2log n) bits. In this paper, we initiate a systematic study of graph problems from the paradigm of parameterized streaming algorithms. We first define a natural hierarchy of space complexity classes of FPS, SubPS, SemiPS, SupPS and BrutePS, and then obtain tight classifications for several well-studied graph problems such as Longest Path, Feedback Vertex Set, Dominating Set, Girth, Treewidth, etc. into this hierarchy. (see paper for full abstract)
READ FULL TEXT