Towards Accurate and Reliable Change Detection of Remote Sensing Images via Knowledge Review and Online Uncertainty Estimation

05/31/2023
by   Zhenglai Li, et al.
0

Change detection (CD) is an essential task for various real-world applications, such as urban management and disaster assessment. However, previous methods primarily focus on improving the accuracy of CD, while neglecting the reliability of detection results. In this paper, we propose a novel change detection network, called AR-CDNet, which is able to provide accurate change maps and generate pixel-wise uncertainty. Specifically, an online uncertainty estimation branch is constructed to model the pixel-wise uncertainty, which is supervised by the difference between predicted change maps and corresponding ground truth during the training process. Furthermore, we introduce a knowledge review strategy to distill temporal change knowledge from low-level features to high-level ones, thereby enhancing the discriminability of temporal difference features. Finally, we aggregate the uncertainty-aware features extracted from the online uncertainty estimation branch with multi-level temporal difference features to improve the accuracy of CD. Once trained, our AR-CDNet can provide accurate change maps and evaluate pixel-wise uncertainty without ground truth. Experimental results on two benchmark datasets demonstrate the superior performance of AR-CDNet in the CD task. The demo code for our work will be publicly available at <https://github.com/guanyuezhen/AR-CDNet>.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset