Towards Efficient Unconstrained Palmprint Recognition via Deep Distillation Hashing

04/07/2020
by   Huikai Shao, et al.
0

Deep palmprint recognition has become an emerging issue with great potential for personal authentication on handheld and wearable consumer devices. Previous studies of palmprint recognition are mainly based on constrained datasets collected by dedicated devices in controlled environments, which has to reduce the flexibility and convenience. In addition, general deep palmprint recognition algorithms are often too heavy to meet the real-time requirements of embedded system. In this paper, a new palmprint benchmark is established, which consists of more than 20,000 images collected by 5 brands of smart phones in an unconstrained manner. Each image has been manually labeled with 14 key points for region of interest (ROI) extraction. Further, the approach called Deep Distillation Hashing (DDH) is proposed as benchmark for efficient deep palmprint recognition. Palmprint images are converted to binary codes to improve the efficiency of feature matching. Derived from knowledge distillation, novel distillation loss functions are constructed to compress deep model to further improve the efficiency of feature extraction on light network. Comprehensive experiments are conducted on both constrained and unconstrained palmprint databases. Using DDH, the accuracy of palmprint identification can be increased by up to 11.37 of palmprint verification can be reduced by up to 3.11 the feasibility of our database, and DDH can outperform other baselines to achieve the state-of-the-art performance. The collected dataset and related source codes are publicly available at http://gr.xjtu.edu.cn/web/bell/resource.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset