Towards Observability for Machine Learning Pipelines

08/31/2021
by   Shreya Shankar, et al.
0

Software organizations are increasingly incorporating machine learning (ML) into their product offerings, driving a need for new data management tools. Many of these tools facilitate the initial development and deployment of ML applications, contributing to a crowded landscape of disconnected solutions targeted at different stages, or components, of the ML lifecycle. A lack of end-to-end ML pipeline visibility makes it hard to address any issues that may arise after a production deployment, such as unexpected output values or lower-quality predictions. In this paper, we propose a system that wraps around existing tools in the ML development stack and offers end-to-end observability. We introduce our prototype and our vision for mltrace, a platform-agnostic system that provides observability to ML practitioners by (1) executing predefined tests and monitoring ML-specific metrics at component runtime, (2) tracking end-to-end data flow, and (3) allowing users to ask arbitrary post-hoc questions about pipeline health.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro