Towards Robust Inductive Graph Incremental Learning via Experience Replay

02/07/2023
by   Junwei Su, et al.
0

Inductive node-wise graph incremental learning is a challenging task due to the dynamic nature of evolving graphs and the dependencies between nodes. In this paper, we propose a novel experience replay framework, called Structure-Evolution-Aware Experience Replay (SEA-ER), that addresses these challenges by leveraging the topological awareness of GNNs and importance reweighting technique. Our framework effectively addresses the data dependency of node prediction problems in evolving graphs, with a theoretical guarantee that supports its effectiveness. Through empirical evaluation, we demonstrate that our proposed framework outperforms the current state-of-the-art GNN experience replay methods on several benchmark datasets, as measured by metrics such as accuracy and forgetting.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset